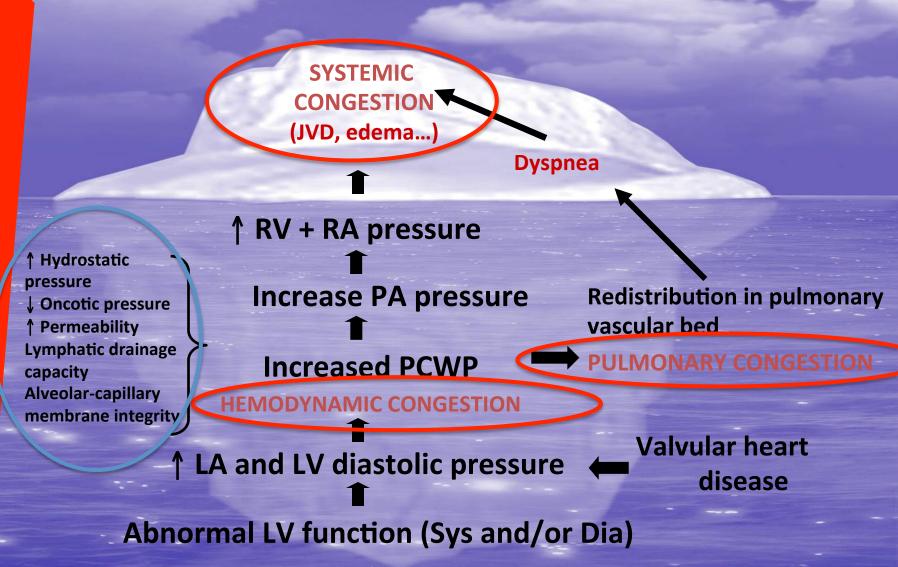




## Eco polmonare: Congestione emodinamica o congestione clinica?




Luna Gargani

Istituto di Fisiologia Clinica Consiglio Nazionale delle Ricerche, Pisa

Napoli, 17 Aprile 2015

#### Nessun conflitto di interesse da dichiarare

#### **The Congestion Iceberg in Heart Failure**



Modified by Gheorghiade M et al. Eur J Heart Fail 2010;12:423-33.

## **Assessing and grading congestion**



European Journal of Heart Failure (2010) **12**, 423–433 doi:10.1093/eurjhf/hfq045 REVIEW

Assessing and grading congestion in acute heart failure: a scientific statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine

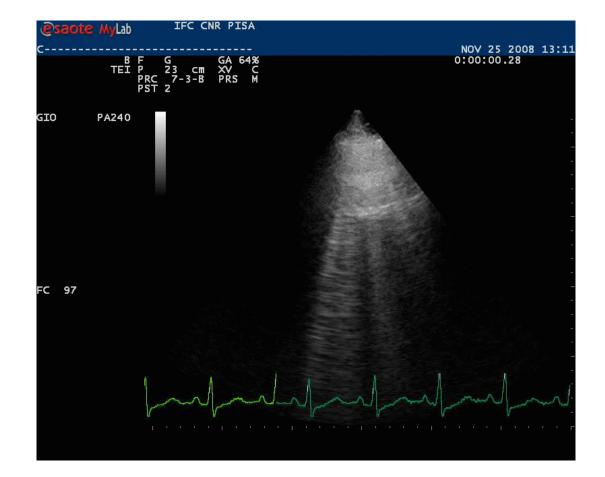
volume status prior to discharge; however, <u>there is no established</u> <u>algorithm for the assessment of congestion</u>.<sup>16</sup> Currently, the gold standard for evaluating haemodynamic congestion in HF patients is cardiac catheterization to measure right atrial pressure and PCWP.<sup>50</sup> However, the invasive nature of catheterization limits

Gheorghiade M et al. Eur J Heart Fail 2010;12:423-33.

## **Assessing and grading congestion**



European Journal of Heart Failure (2010) **12**, 423–433 doi:10.1093/eurjhf/hfq045 REVIEW


Assessing and grading congestion in acute heart failure: a scientific statement from the Acute Heart Failure Committee of the Heart Failure Association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine

Ultrasonography of the lungs using an echocardiographic probe is another potentially useful way to assess pulmonary congestion. In patients with pulmonary congestion, images defined as 'ultrasound lung comets' can be visualized by scanning with cardiac probes along the intercostal spaces.<sup>97</sup> A correlation exists between the number of 'ultrasound lung comets,' pulmonary congestion demonstrated by radiographic signs, interstitial oedema documented by computed tomography, extravascular lung water measured by the indicator dilution technique, and PCWP.<sup>98,99</sup>

Gheorghiade M et al. Eur J Heart Fail 2010;12:423-33.

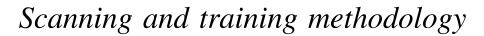
### Linee B: definizione

# Artefatti di riverberazione verticali ed iperecogeni, che originano dalla pleura



Giovanni Volpicelli **Mahmoud Elbarbary Michael Blaivas Daniel A. Lichtenstein Gebhard Mathis** Andrew W. Kirkpatrick Lawrence Melniker Luna Gargani Vicki E. Noble **Gabriele Via Anthony Dean** James W. Tsung **Gino Soldati Roberto Copetti Belaid Bouhemad Angelika Reissig Eustachio Agricola Jean-Jacques Rouby Charlotte Arbelot Andrew Liteplo** Ashot Sargsyan Fernando Silva **Richard Hoppmann Raoul Breitkreutz** Armin Seibel Luca Neri **Enrico Storti Tomislav Petrovic International Liaison Committee on Lung Ultrasound** (ILC-LUS) for the International **Consensus Conference on Lung Ultrasound (ICC-LUS)** 

#### International evidence-based recommendations for point-of-care lung ultrasound




#### International Evidenced-based Recommendations for Point-of-Care Lung Ultrasound

Endorsed by the World Interactive Network Focused on Critical Ultrasound (WINFOCUS)

#### Writing Committee:

Giovanni Volpicelli (Chairperson)\*, Daniel Lichtenstein, Gebhard Mathis, Andrew Kirkpatrick, Luna Gargani, Vicki Noble, Gino Soldati, Roberto Copetti, Belaid Bouhemad, Angelika Reissig.



B-D2-S1 (strong: level A)

• Multiple B-lines are the sonographic sign of lung interstitial syndrome.

| ICINE | Anna Anna Anna Anna Anna Anna Anna Anna | EP-                                                                                                                                                                                          |   |
|-------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Ē     | Annual I                                | Life Respect as<br>Designation from the workston care tasks? Second<br>application of the particular term particular                                                                         |   |
| 2     |                                         | CL Rece (1 m).<br>Strate up to the other three related or the strategies and other three relations.                                                                                          |   |
| ¥.    |                                         | B. Paperte et al.<br>Robust and aspectroscopy weblic sheet are characterized<br>by beginning of light drugbes; in the attenuits<br>C. Lemmus et al.                                          |   |
| A     |                                         | ten terrenti furter indensi atiger iff i teleprektily<br>anerited att encoded idensis der aglit des<br>1 April 2014                                                                          | - |
| U     |                                         | And previous ing units and interestable relative segmentar<br>requires calificated interestinations, performed another<br>regime and regify phase particular                                 |   |
| ш     |                                         | <ol> <li>Research of all</li> <li>Equil sequences produced by restricted and</li> <li>Research on the set operation (age after test</li> </ol>                                               |   |
| ≥     |                                         | (-) Approach of vo.<br>Benchmag attract present with exceptional interpretation<br>banch there engineering excessed by two obtained<br>spectroscopy to prevently Approximate angle patients. |   |
| Š     |                                         | 8.0. Assession Regare (1) ing.<br>File solid of general savalities improvement resources<br>to discussioning fractionation of analysiss and<br>primelikal receipted Information spec cell.   |   |
| Ē     |                                         | A Based in<br>Determined vertices segmetics in uses<br>thank 1 MAC and registers dress patients<br>ryreget developed organizes (b)                                                           |   |
| Z     |                                         | 2 Springer                                                                                                                                                                                   |   |

## Sindrome interstiziale polmonare

Intensive Care Med DOI 10.1007/s00134-012-2513-4

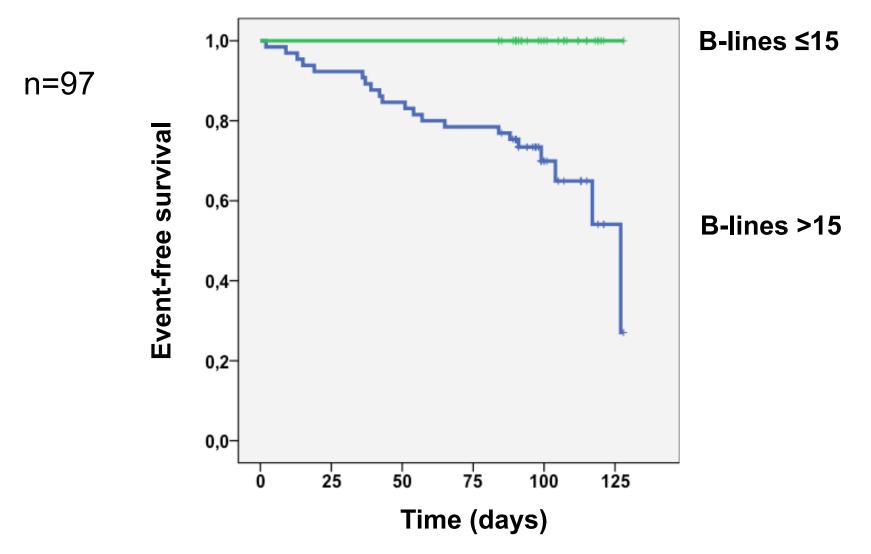
CONFERENCE REPORTS AND EXPERT PANEL

Giovanni Volpicelli **Mahmoud Elbarbary Michael Blaivas Daniel A. Lichtenstein Gebhard Mathis Andrew W. Kirkpatrick** Lawrence Melniker Luna Gargani Vicki E. Noble Gabriele Via **Anthony Dean** James W. Tsung Gino Soldati **Roberto Copetti Belaid Bouhemad Angelika Reissig Eustachio Agricola Jean-Jacques Rouby Charlotte Arbelot Andrew Liteplo** Ashot Sargsyan Fernando Silva **Richard Hoppmann Raoul Breitkreutz** Armin Seibel Luca Neri **Enrico Storti Tomislav Petrovic** International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International **Consensus Conference on Lung Ultrasound (ICC-LUS)** 

#### International evidence-based recommendations for point-of-care lung ultrasound

- The presence of multiple diffuse bilateral B-lines indicates interstitial syndrome. Causes of interstitial syndrome include the following conditions:
  - Pulmonary edema of various causes
  - Interstitial pneumonia or pneumonitis
  - Diffuse parenchymal lung disease (pulmonary fibrosis)

#### When to assess pulmonary congestion




| When          | Diagnostic target                 |  |
|---------------|-----------------------------------|--|
| Outpatient    | Exclude impending instabilization |  |
| ER            | AHF diagnosis                     |  |
| Ward          | Therapy titration                 |  |
| Pre-discharge | Risk stratification               |  |

Picano E, Gargani L, Gheorghiade M Heart Fail Rev. 2010;15:63-72.

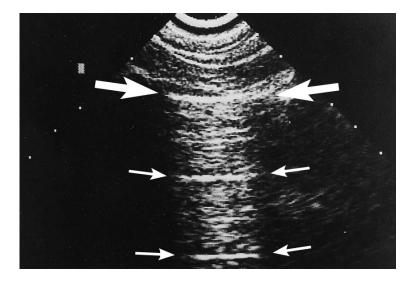
### **Heart failure out-patients**

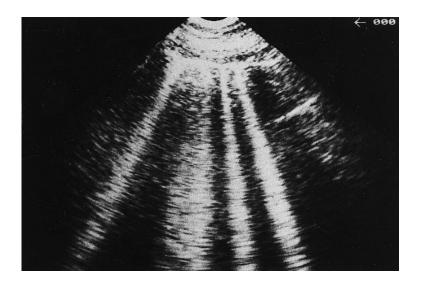
21 ri-ospedalizzazioni per scompenso



Miglioranza M, Gargani L et al. ESC 2013

#### When to assess pulmonary congestion



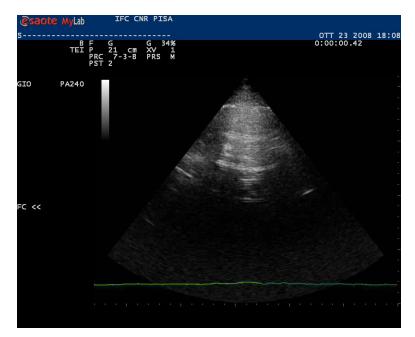


| When                                  | hen Diagnostic target |  |
|---------------------------------------|-----------------------|--|
| Outpatient Exclude impending instabil |                       |  |
| ER                                    | AHF diagnosis         |  |
| Ward                                  | Therapy titration     |  |
| Pre-discharge                         | Risk stratification   |  |

Picano E, Gargani L, Gheorghiade M Heart Fail Rev. 2010;15:63-72.

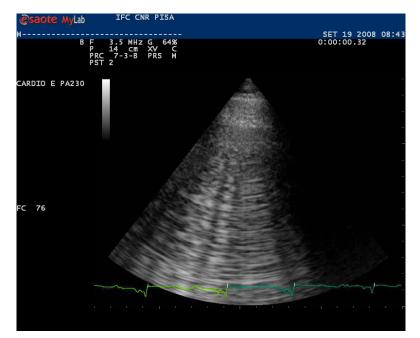
#### BRIEF REPORT

D. Lichtenstein G. Mezière A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact






#### Exacerbation of COPD


#### Acute pulmonary oedema

#### BRIEF REPORT

D. Lichtenstein G. Mezière A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact



**Exacerbation of COPD** 



#### Acute pulmonary oedema

#### Emergency echocardiography: the European Association of Cardiovascular Imaging recommendations

Aleksandar N. Neskovic<sup>1</sup>\*, Andreas Hagendorff<sup>2</sup>, Patrizio Lancellotti<sup>3</sup>, Fabio Guarracino<sup>4</sup>, Albert Varga<sup>5</sup>, Bernard Cosyns<sup>6</sup>, Frank A. Flachskampf<sup>7</sup>, Bogdan A. Popescu<sup>8</sup>, Luna Gargani<sup>9</sup>, Jose Luis Zamorano<sup>10</sup>, and Luigi P. Badano<sup>11</sup>, on behalf of the European Association of Cardiovascular Imaging<sup>†</sup>

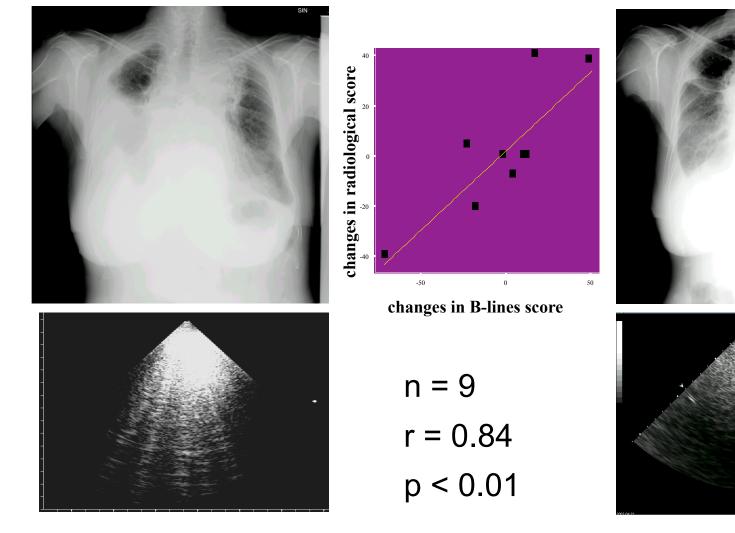
#### Lung ultrasound examination

In recent years, lung ultrasound (LUS) has been proposed as a useful point-of-care tool in emergency.  $^{25}$ 

The LUS examination can be performed with any commercially available 2-D scanner, including pocket-size devices, by using a cardiac, convex or microconvex transducer, with the patient in the near-supine, supine, sitting, or even standing position.

In addition to the detection of pleural effusion, LUS may help in the diagnosis of acute dysphoea, allowing the differential identification of pneumothorax, pulmonary consolidations, acute respiratory distress syndrome, and cardiogenic pulmonary oedema.<sup>25</sup>

The absence of multiple bilateral B-lines, a sign of increased extravascular lung water, excludes cardiogenic pulmonary oedema with a negative predictive value close to 100%.<sup>26</sup>


#### When to assess pulmonary congestion



| Diagnostic target                 |  |
|-----------------------------------|--|
| Exclude impending instabilization |  |
| AHF diagnosis                     |  |
| Therapy titration                 |  |
| Risk stratification               |  |
|                                   |  |

Picano E, Gargani L, Gheorghiade M Heart Fail Rev. 2010;15:63-72.

#### Prima e dopo terapia



Chest X-ray and B-lines at admission

Chest X-ray and B-lines after 3 days

emo in corso

Jambrik Z, Picano E et al. *Am J Cardiol.* 2004;93:1265-1270

## AF, 81 anni, CMD, FE 18%

- Ammesso per scompenso cardiaco acuto
- In terapia con ACEi, beta-bloccanti, anti-aldosteronici, furosemide

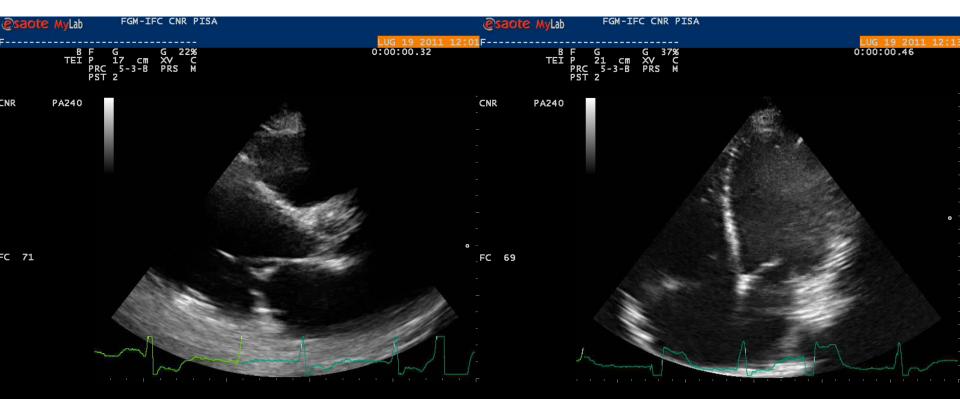
#### Esame obiettivo all'ingresso

Azione cardiaca aritmica. Toni parafonici. Soffio sistolico mitralico 2/6 L.

Edema sottopalpebrale bilateralmente. Segni di glossite. Subittero sclerale.

Polsi arteriosi presenti a sede poplitea e femorale, normosfigmici e simmetrici; non valutabili in sede pedidia e tibiale posteriore.

Non soffi vascolari. Lieve turgore giugulare con riflesso epato-giugulare presente. Presenza di elettrostimolatore a sede prepettorale sinistra.


Rumore respiratorio ridotto a sede bibasilare. Lieve imbibizione del pannicolo sottuocutaneo a livello del dorso e del sacro.

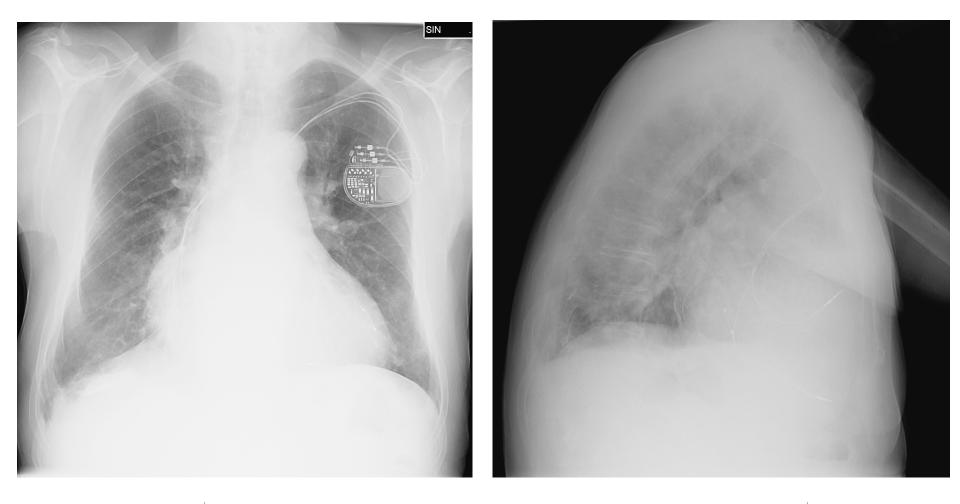
Addome trattabile alla palpazione superficiale e profonda; margine inferiore del fegato debordante due dita trasverse dall'arcata costale in inspirazione profonda. Esiti chirurgici addominali.

Edemi declivi improntabili a livello di gamba bilateralmente. Segni di flebopatia cronica agli arti inferiori.

Peso 86,3 Kg; altezza 184 cm. BMI 25,49. Sup. corporea 2,09. Pressione arteriosa 110/80 mmHg. Polso 70 b.p.m.

## Ecocardiogramma

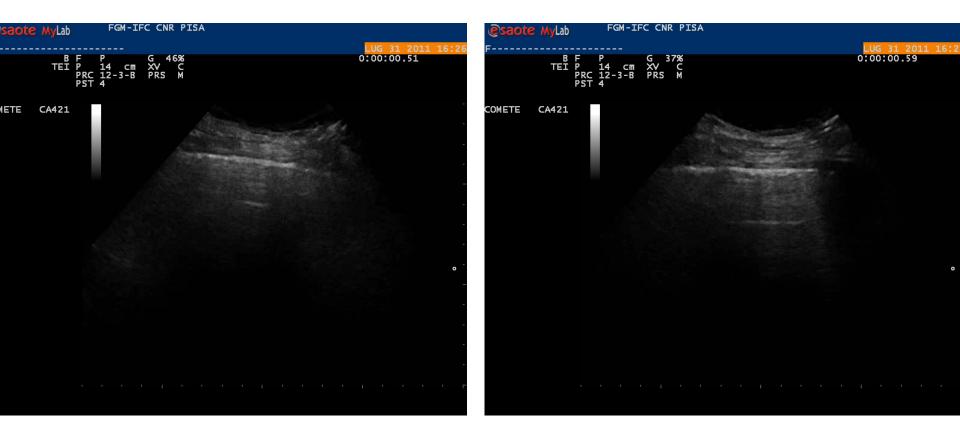



FE 18% E/A 2.8 E/e' 17 IM moderata TAPSE 14 mm PASP 42 mmHg

## **Dispnea in EF 18%**

#### Diario

Il paziente lamenta dispnea. Obiettività: crepitii bibasilari. Sat 02=96% in aria ambiente. Si aumenta infusione di lasix da 10 a 15 cc (PA=105/70 mmHg). La dispnea, alla luce anche del dato emogasanalitico e clinico potrebbe essere dovuta ad respiro periodico centrale. Inizia 02 terapia con occhialini a 2 l

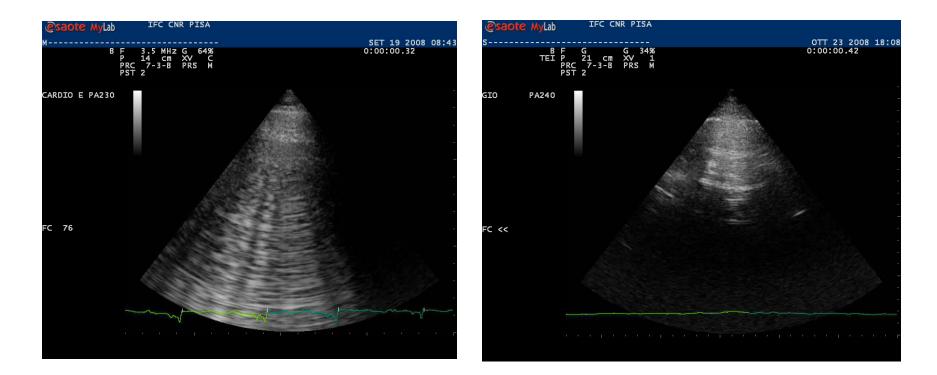

### **Radiografia del torace**



#### Radiografia Torace a letto

ombra cardiaca ingrandita in toto, peduncolo vascolare slargato, diffuso rinforzo della trama, sollevamento dell'emidiaframma di sinistra.

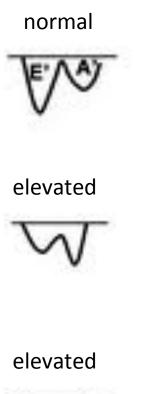
### **Ecografia polmonare**

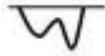



### **Dispnea in EF 18%**

#### Diario

Paziente scarsamente responsivo. Diuresi 24 ore 2000 ml. Agli esami bioumorali severa emoconcentrazione (Hb 20.1 g/dL, Hc 57.6%), persistente aumento di azotemia e creatininemia. L' EGA mostra ipossiemia lieve e lieve acidosi. Si decide per idratazione (1ml/Kg/ora) 1000 ml di SF in 24 ore + 500 ml di aminoacidi in 24 ore. Non diuretico. Si posiziona urometro per diuresi oraria e si richiede bilancio idrico delle 24 ore.


#### **Take-home message**




AM, maschio, 57 anni FE circa 20%, CMD CM, maschio, 32 anni FE circa 20%, CMD

Non invasive PCWP = 23 mmHg PASP = 40 mmHg Non invasive PCWP = 21 mmHg PASP = 38 mmHg

## Congestione emodinamica vs congestione polmonare







#### no congestion



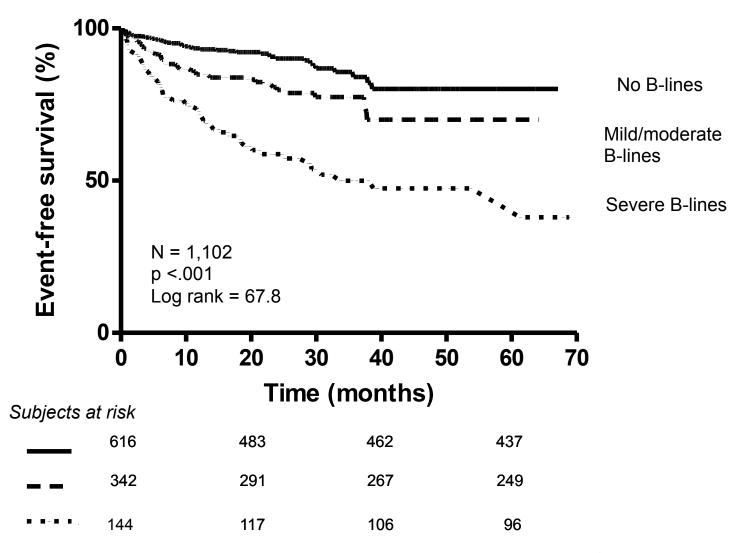
### hemodynamic congestion



pulmonary congestion

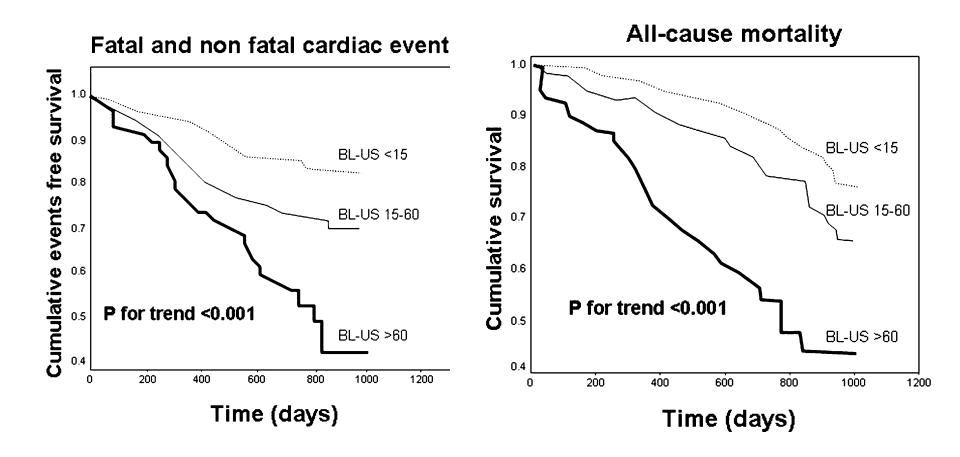
Gargani L. Cardiovascular Ultrasound 2011;9:6.

#### When to assess pulmonary congestion




| Diagnostic target                 |  |
|-----------------------------------|--|
| Exclude impending instabilization |  |
| AHF diagnosis                     |  |
| Therapy titration                 |  |
| Risk stratification               |  |
| •                                 |  |

Picano E, Gargani L, Gheorghiade M Heart Fail Rev. 2010;15:63-72.


## Prognosi in pazienti cardiopatici

206 events (death, AMI, decompensated heart failure)



Gargani L, Picano E et al. ESC Congress 2010

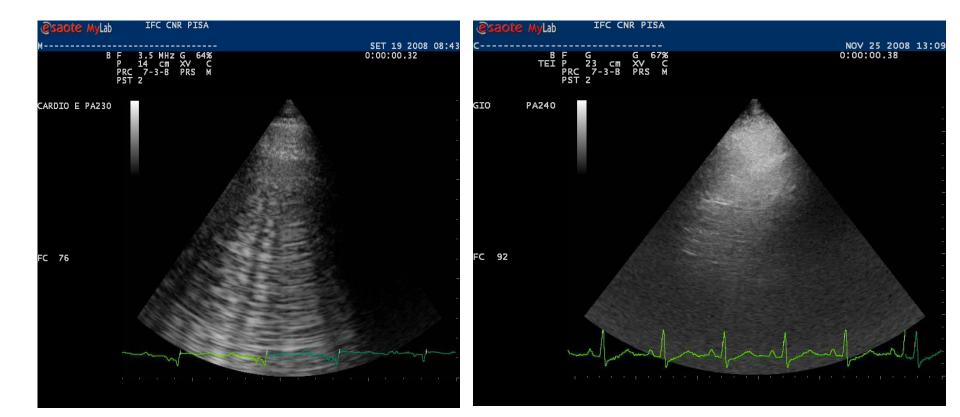
## Prognosi in pazienti in dialisi



### **Come fare?**



### Limiti


Operatore-dipendenza

### Limiti

Operatore-dipendenza

Quantificazione

#### **Come contare le linee B?**



#### About 100% = 10 B-lines

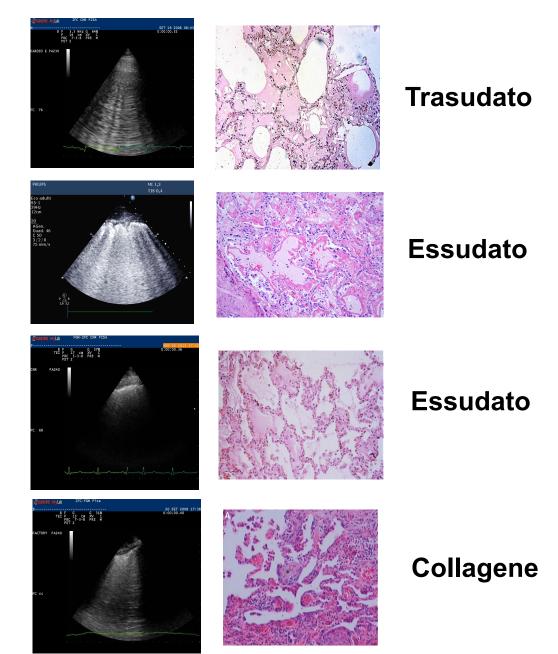
About 50% = 5 B-lines

### Limiti

Operatore-dipendenza

Quantificazione

Specificità


#### Linee B: un segno non specifico di sd interstiziale polmonare

Edema polmonare cardiogeno

Edema polmonare non cardiogeno

Polmonite interstiziale

Fibrosi polmonare



#### Lung ultrasound: a new tool for the cardiologist

|                         | Acute cardiogenic<br>pulmonary edema            | Chronic<br>heart failure                                                                   | ALI/ARDS                                                                                      | Pulmona<br>fibrosis                           |
|-------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|
| Clinical setting        | acute                                           | chronic                                                                                    | acute                                                                                         | chronic                                       |
| B-lines number          | +++++                                           | +/++/+++                                                                                   | ++++                                                                                          | +/++/+++                                      |
| B-lines<br>distribution | multiple, diffuse,<br>bilateral<br>(white lung) | multiple, diffuse,<br>bilateral, following<br>decubitant regions<br>(black and white lung) | non-homogeneous<br>distribution, presence<br>of spared areas                                  | more frequently<br>posterior at lung<br>basis |
| Other LUS signs         | pleural effusion                                | pleural effusion                                                                           | pleural effusion, pleural<br>alterations,<br>parenchymal<br>consolidations of<br>various size | pleural thickenir                             |
| Echocardiogram          | abnormal                                        | abnormal                                                                                   | likely normal                                                                                 | likely normal                                 |

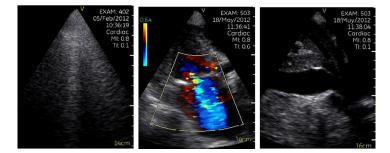
ALI = acute lung injury; ARDS = acute respiratory distress syndrome; LUS = lung ultrasound.



Table 2 The list of nine possible ultrasound patterns diagnosed in patients admitted for undifferentiated hypotension and the corresponding combination of findings detected at multiorgan point-of-care ultrasonographic evaluation

| Ultrasound pattern               | Organ evaluation                                                                  | Corresponding signs                                                              |
|----------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Hypovolemic                      | Heart                                                                             | Hyperkinetic LV <sup>a</sup>                                                     |
|                                  | Inferior vena cava                                                                | Diam. $<2 \text{ cm} + \text{Resp. collapse} >50 \%^{a}$                         |
|                                  | Lungs                                                                             | A pattern <sup>a</sup>                                                           |
|                                  | Abdomen                                                                           | Free fluids/Aortic aneurysm <sup>a</sup>                                         |
| Distributive                     | Heart                                                                             | Hyperkinetic LV                                                                  |
|                                  | Inferior vena cava                                                                | Diam. $<2 \text{ cm} + \text{Resp. collapse} >50 \%$                             |
|                                  | Lungs                                                                             | B pattern with consolidation or consolidation with air bronchograms <sup>b</sup> |
| Hypovolemic/distributive         | Heart                                                                             | Hyperkinetic LV <sup>a</sup>                                                     |
|                                  | Inferior vena cava                                                                | Diam. $<2 \text{ cm} + \text{Resp. collapse} > 50 \%^{a}$                        |
|                                  | Lungs                                                                             | A/B pattern <sup>a</sup>                                                         |
|                                  | Abdomen                                                                           | Free fluids <sup>a</sup>                                                         |
| Obstructive cardiac tamponade    | Heart                                                                             | Pericard. effusion with tamponade                                                |
| Obstructive pulmonary embolism   | Heart                                                                             | Dilated/Hypokinetic RV <sup>a</sup>                                              |
|                                  | Inferior vena cava                                                                | Sludge or no respiratory collapse and max. diam. >2 cm <sup>a</sup>              |
|                                  | Lungs                                                                             | A pattern <sup>a</sup>                                                           |
|                                  | Peripheral veins                                                                  | Deep vein thrombosis <sup>a</sup>                                                |
| Obstructive tension pneumothorax | Heart                                                                             | Dilated/Hypokinetic RV                                                           |
|                                  | Inferior vena cava                                                                | Sludge or no respiratory collapse and max.<br>diam. >2 cm                        |
|                                  | Lungs                                                                             | No sliding and pulse, no B-lines,<br>no consolidation <sup>b</sup>               |
| Cardiogenic                      | Heart                                                                             | Hypokinetic left ventricle                                                       |
|                                  | Lungs                                                                             | B pattern <sup>b</sup>                                                           |
| Mixed                            | Pattern where criteria for more                                                   |                                                                                  |
|                                  | than a single diagnosis are<br>satisfied (other than<br>hypovolemic/distributive) |                                                                                  |
| Indefinite                       | Pattern where criteria for a single                                               |                                                                                  |
|                                  | diagnosis are not satisfied<br>or uncertain                                       |                                                                                  |

*LV* left ventricle, *RV* right ventricle <sup>a</sup> At least two of these signs <sup>b</sup> Necessarily present

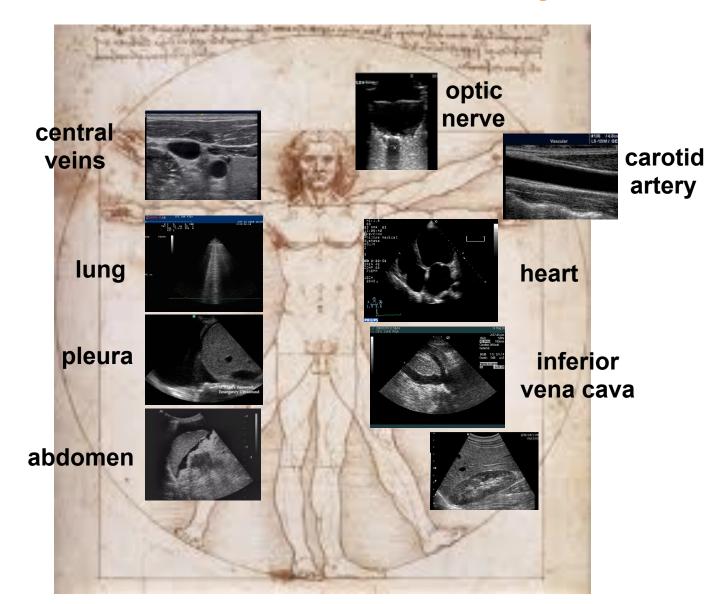

#### RESEARCH

#### Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting

**Open Access** 

Katsuya Kajimoto<sup>1\*</sup>, Keiko Madeen<sup>1</sup>, Tomoko Nakayama<sup>2</sup>, Hiroki Tsudo<sup>3</sup>, Tadahide Kuroda<sup>1</sup> and Takashi Abe<sup>3</sup>






#### Table 2 Plasma BNP, lung ultrasound alone or combined with BNP, cardiac findings, and the LCI integrated ultrasound for diagnosis of AHFS

|                                                                      | Sensitivity<br>(%) | Specificity<br>(%) | NPV<br>(%) | PPV<br>(%) | Accuracy<br>(%) |
|----------------------------------------------------------------------|--------------------|--------------------|------------|------------|-----------------|
| BNP ≥100 pg/ml                                                       | 92.4               | 35.1               | 76.4       | 67.1       | 68.8            |
| Framingham<br>criteria*                                              | 79.2               | 56.7               | 65.6       | 64.6       | 70.0            |
| Lung ultrasound<br>alone                                             | 96.2               | 54.0               | 90.9       | 75.0       | 78.8            |
| Both Lung<br>ultrasound and<br>BNP (≥100 pg/ml)                      | 88.6               | 67.6               | 80.6       | 79.8       | 80.0            |
| Reduced EF<br>(LVEF <40%)                                            | 26.4               | 86.5               | 45.1       | 73.7       | 51.1            |
| MR or TR≥<br>moderate                                                | 92.4               | 81.0               | 88.2       | 87.5       | 87.7            |
| IVC collapsibility<br><50%                                           | 83.0               | 81.1               | 76.9       | 86.3       | 82.2            |
| Both preserved EF<br>and MR≥moderate                                 | 56.7               | 100.0              | 61.6       | 100.0      | 67.0            |
| Both reduced EF<br>and either MR or<br>TR≥moderate                   | 30.1               | 94.5               | 48.6       | 88.9       | 56.7            |
| Lung-cardiac-inferior<br>vena cava (LCI)<br>integrated<br>ultrasound | 94.3               | 91.9               | 91.9       | 94.3       | 93.3            |

Kajimoto et al. Cardiovascular Ultrasound 2012, 10:49

# Toward an integrated ultrasound approach Point-of-care, focused whole-body ultrasound



# **Eco polmonare:**

### congestione emodinamica o congestione clinica?



European Journal of Heart Failure (2012) **14**, 1194–1196 doi:10.1093/eurjhf/hfs157

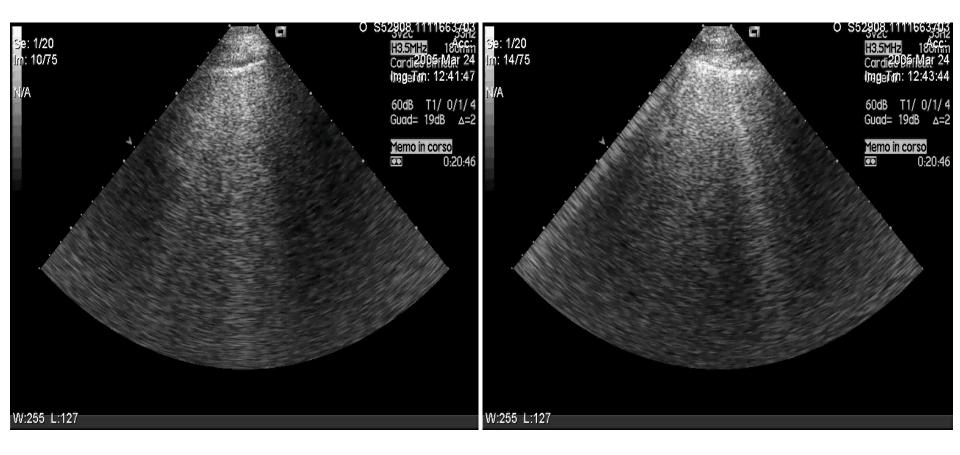
**EDITORIAL** 

#### Ultrasound lung comets: the shape of lung water

#### **Eugenio Picano\* and Luna Gargani**

CNR, Institute of Clinical Physiology, 56124 Pisa, Italy



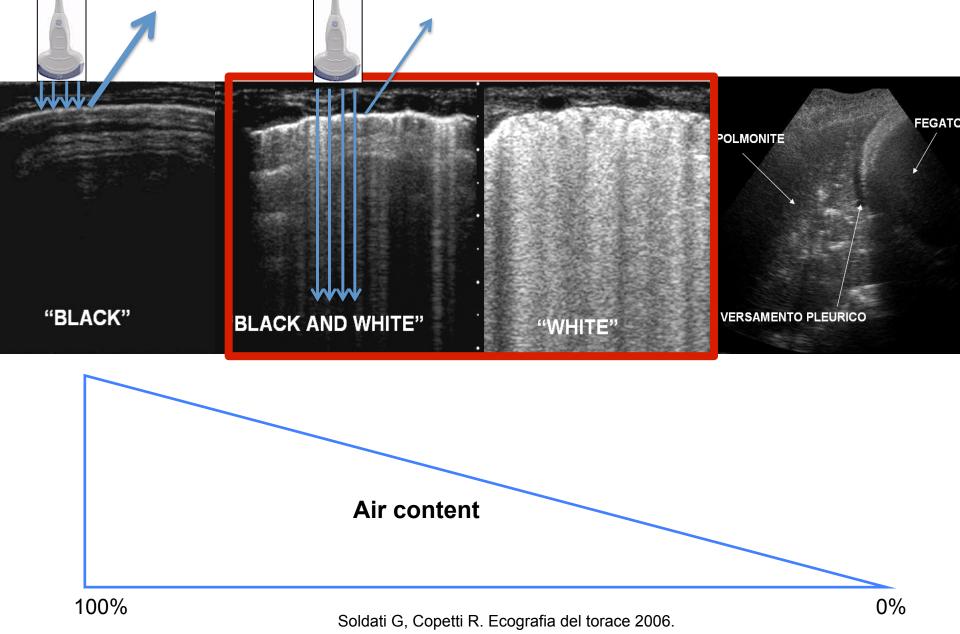

**Congestione polmonare** 

Sellerio editore Palermo

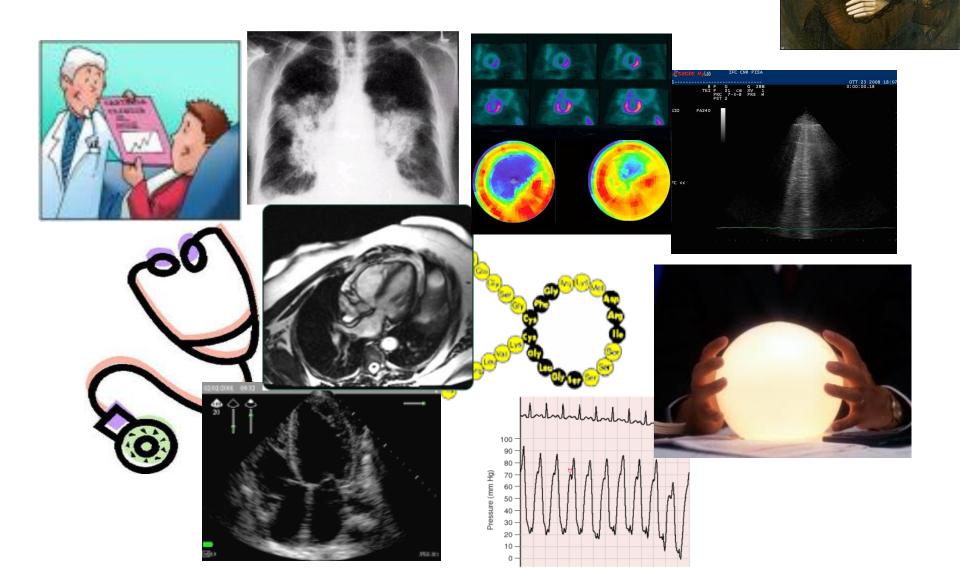
### FG, 74 aa, ambulatorio eco

- Maschio
- Cardiopatia ischemica, FE 30%
- Terapia: ASA, Ramipril, Carvedilolo, furosemide
- NYHA II
- Ecocardiogramma annuale di routine: invariato

#### FG, 74 aa, ambulatorio eco

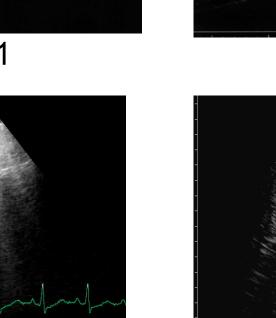


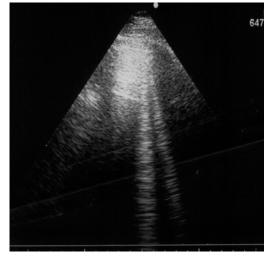

Destra

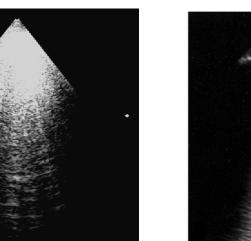

Sinistra

#### Impending decompensation


# **Ecografia polmonare**





### No man is an island




### **How to count B-lines**













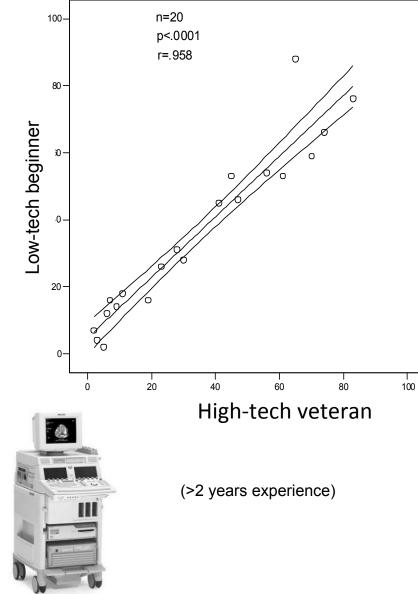
# Lung ultrasound and chest X-ray







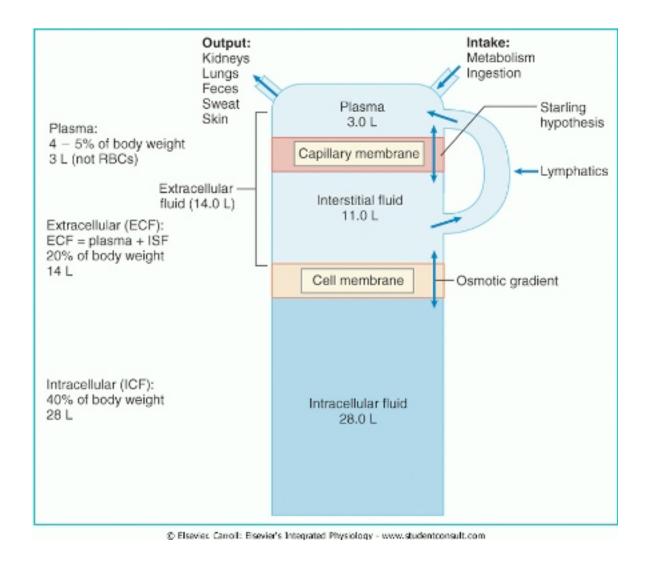
#### The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography


Rosa Sicari<sup>\*</sup>, Maurizio Galderisi, Jens-Uwe Voigt, Gilbert Habib, Jose L. Zamorano, Patrizio Lancellotti, and Luigi P. Badano

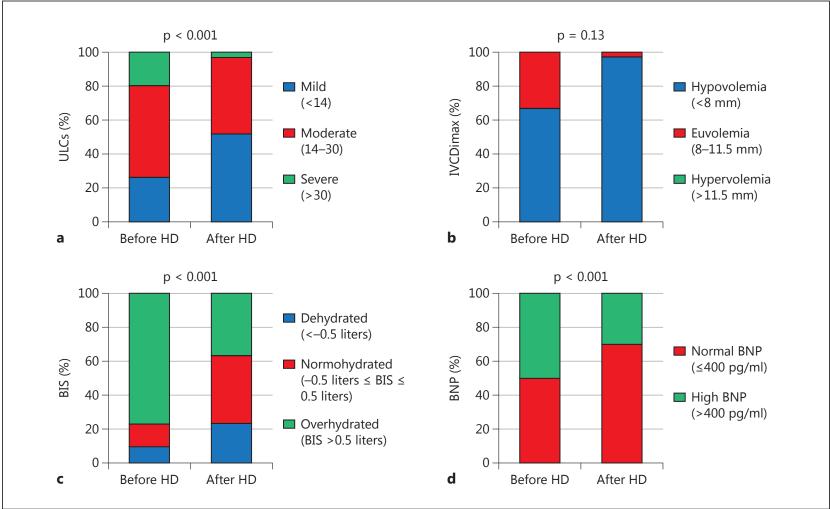
CNR, Institute of Clinical Physiology, Italy

#### Table 2Summary of indications for pocket-sizedevices

- 1. Complement to a physical examination in the coronary and intensive care unit
- 2. Tool for a fast initial screening in an emergency setting
- 3. Cardiologic counselling in- or outside health-care facilities and hospitals
- 4. First cardiac evaluation in ambulances
- 5. Screening programmes in schools, industry, and community activities
- 6. Triaging candidates for a complete echocardiographic examination
- 7. Teaching tool
- 8. Semi-quantification of extravascular lung water


# **Operator-dependency**

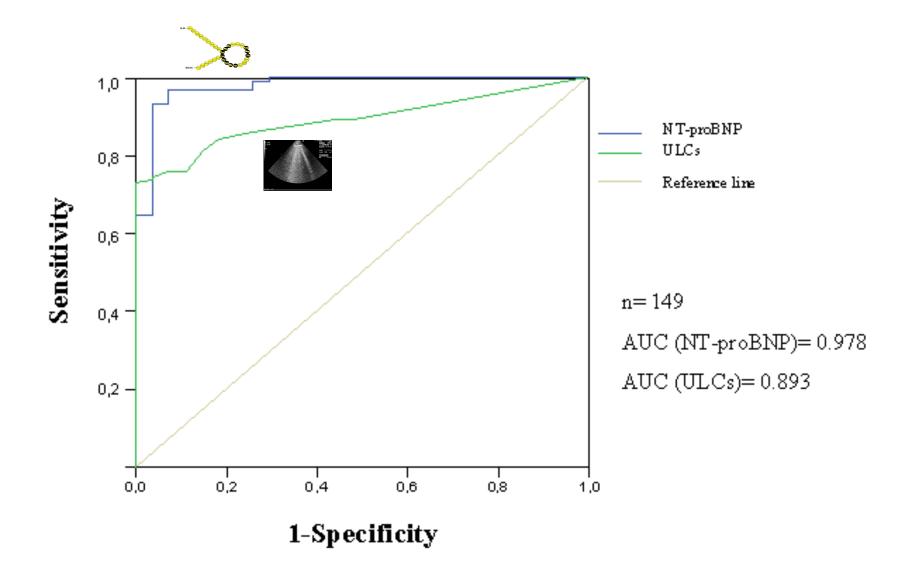





(<1 hour experience)

Bedetti G, Gargani L, et al. Cardiovasc Ultrasound. 2006;4:34

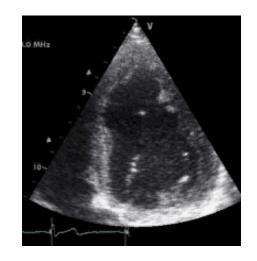



#### **Comparison and Reproducibility of Techniques for Fluid Status Assessment in Chronic Hemodialysis Patients**



Color version available online

Cardiorenal Med 2013;3:104–112

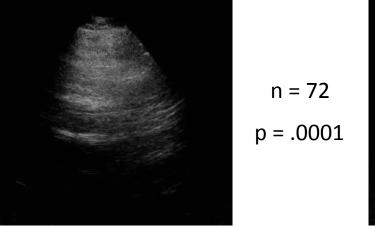

#### **B-lines and natriuretic peptides**

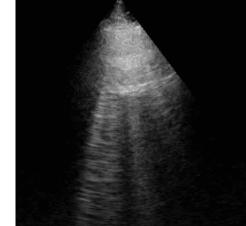


Gargani L, Picano E. Eur J Heart Fail 2008;10:70-7.

#### **Pulmonary congestion stress-echo**

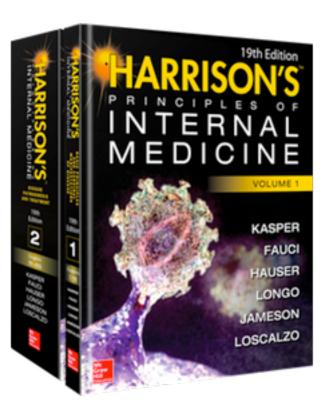
#### Baseline





#### Peak stress



#### WMSI

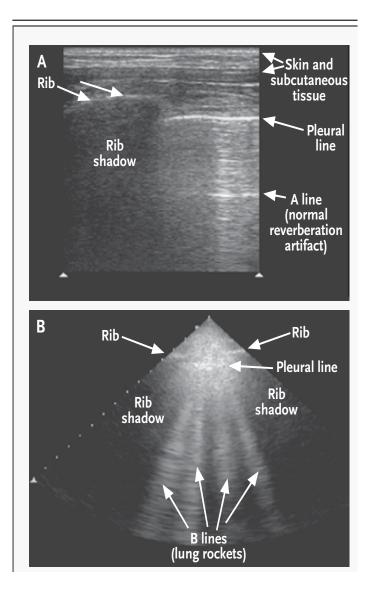







Agricola E, Picano E et al. J Am Soc Echocardiogr 2006;19:457

# Air: an insurmountable obstacle?

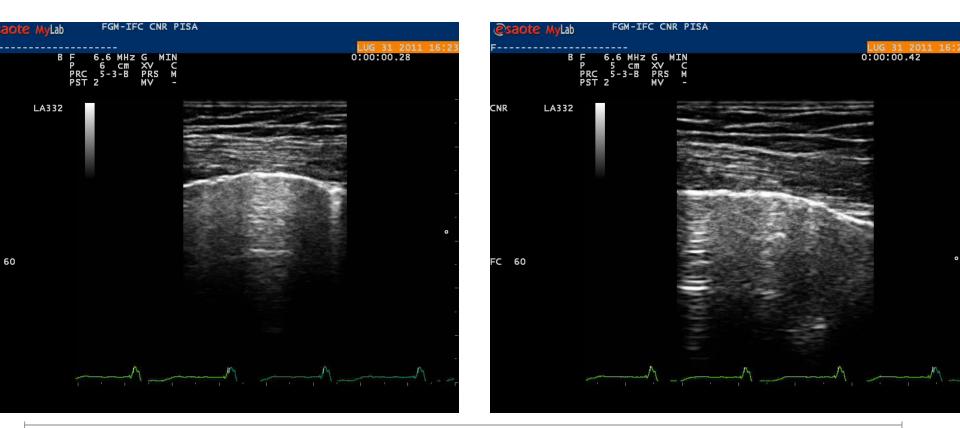



«Because ultrasound energy is rapidly dissipated in air, ultrasound imaging is not useful for evaluation of the pulmonary parenchyma.»

**CURRENT CONCEPTS** 

#### Point-of-Care Ultrasonography

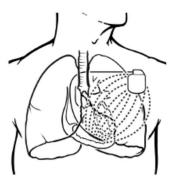
Recently, lung ultrasound has emerged as a new sonographic technique to evaluate many pulmonary conditions.




Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364:749-57.

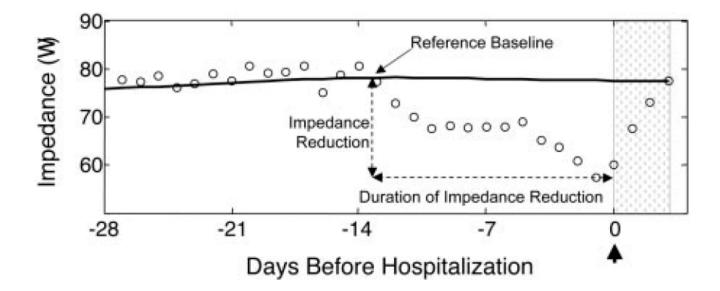
# **Acute heart failure**

| <b>Table 4</b> Positive ultrasound lung scans in the 11individualizable thoracic areas at admission (phase 1) andcontrol (phase 2) in 70 patients admitted for ADHS |                      |                      |       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------|--|--|
| Thoracic area                                                                                                                                                       | Phase 1 <sup>a</sup> | Phase 2 <sup>a</sup> | P(W)  |  |  |
| Anterior superior right                                                                                                                                             | 51 (73%)             | 3 (4.3%)             | <.001 |  |  |
| Anterior medium right                                                                                                                                               | 54 (77%)             | 2 (2.9%)             | <.001 |  |  |
| Anterior basal right                                                                                                                                                | 65 (93%)             | 4 (5.7%)             | <.001 |  |  |
| Lateral superior right                                                                                                                                              | 64 (91%)             | 5 (7.1%)             | <.001 |  |  |
| Lateral medium right                                                                                                                                                | 67 (96%)             | 10 (14%)             | <.001 |  |  |
| Lateral basal right                                                                                                                                                 | 68 (97%)             | 21 (30%)             | <.001 |  |  |
| Anterior superior left                                                                                                                                              | 52 (74%)             | 6 (8.6%)             | <.001 |  |  |
| Anterior medium left                                                                                                                                                | 58 (83%)             | 6 (8.6%)             | <.001 |  |  |
| Lateral superior left                                                                                                                                               | 63 (90%)             | 6 (8.6%)             | <.001 |  |  |
| Lateral medium left                                                                                                                                                 | 70 (100%)            | 11 (16%)             | <.001 |  |  |
| Lateral basal left                                                                                                                                                  | 70 (100%)            | 20 (29%)             | <.001 |  |  |
|                                                                                                                                                                     | $\bigcirc$           | $\bigcirc$           |       |  |  |


# **Ecografia polmonare**



#### Diario


Il paziente lamenta dispnea ingravescente. EO: presenza di fini crepitii diffusi. Tachipnea. Si esegue EGA con riscontro di iponatriemia (sodio 129 mEq/L). All'Rx torace quadro compatibile con edema polmonare. Si sospende infusione in corso e si applica Sol Fis 100 cc + NaCl 40 mEq in 1 ora, a metà infusione applica Lasix 250 mg in pompa siringa in 5 ore. Si posiziona catetere vescicale per il monitoraggio della diuresi.

### **Congestion precedes hospitalization**



#### Intrathoracic Impedance Monitoring in Patients With Heart Failure

Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization



# Lung ultrasound in the ED





201 pts admitted with acute dyspnoea

|                 | Specificity Sensitivity Positive |     |       |            |
|-----------------|----------------------------------|-----|-------|------------|
|                 |                                  |     | •     | predictive |
|                 |                                  |     | value | value      |
| Chest X-ray     | 96%                              | 69% | 91%   | 85%        |
| Lung ultrasound | 90%                              | 97% | 78%   | 99%        |

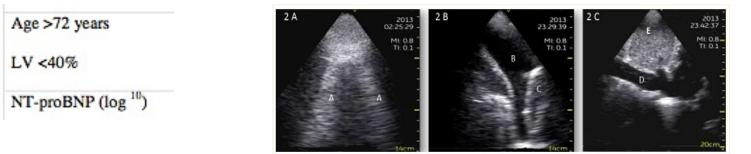
cardiogenic origin of acute dyspnea





Gargani L et al. EUROECHO and other imaging modalities 2011

#### ACCEPTED MANUSCRIPT


#### Imaging congestion with a pocket ultrasound device - prognostic

#### implications in patients with chronic heart failure

Gustafsson Mikael, MD, PhD, Alehagen Urban MD, PhD. Johansson Peter, PhD

Department of Cardiology and Department of Medicine and Health Sciences. Linköping University,

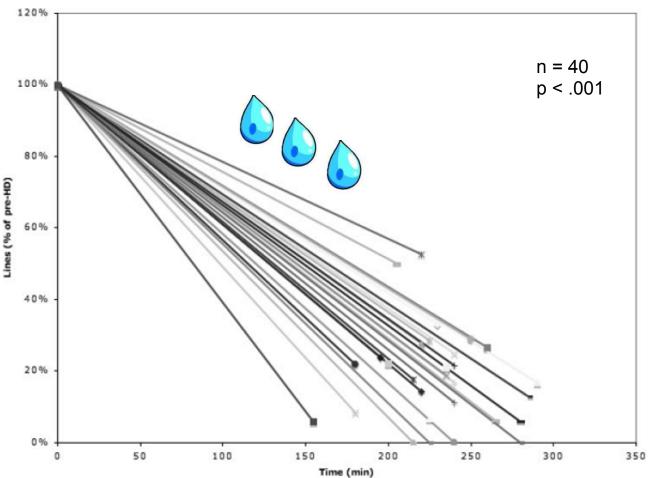
|           | Hazard ratio (CI 95%), p<br>Unadjusted | Hazard ratio (CI 95%), p<br>Adjusted model 1 | Hazard ratio (CI 95%), p<br>Adjusted model 2 |
|-----------|----------------------------------------|----------------------------------------------|----------------------------------------------|
| CTA (>3)  | 3.0 (1.4-6.7), 0.007                   | 3.5 (1.5-7-9), 0.003                         | 2.9 (1.3-6.6), 0.011                         |
| PE        | 3.3 (1.2-8.9), 0.017                   | 3.9 (1.4-10.8), 0.008                        | 1.9 (0.6-6.2), 0.23                          |
| CTA or PE | 3.1 (1.4-7.1), 0.005                   | 3.7 (1.6-8.5), 0.002                         | 4.9 (1.2-20.1), 0.01                         |



evaluate clinically when right-sided HF is predominant, but a dilated VCI, a marker of

elevated right atrial filling pressures, was not significantly associated with a bad outcome in

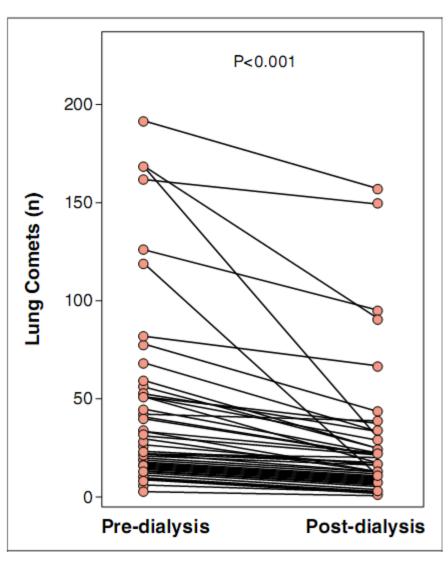
our study. According to a report by de Lorenzo et al.<sup>22</sup> most of the patients with VCI diameter


#### Ultrasound Assessment for Extravascular Lung Water in Patients Undergoing Hemodialysis\*

**Time Course for Resolution** 






feasibility = 100% 10-15 mins



Noble VE et al. Chest 2009; 135:1433–1439.

#### Detection of Pulmonary Congestion by Chest Ultrasound in Dialysis Patients

Francesca Mallamaci, MD,\*† Francesco A. Benedetto, MD,‡ Rocco Tripepi,† Stefania Rastelli, MD,§ Pietro Castellino, MD PROF.,§ Giovanni Tripepi, STAT. DR.,† Eugenio Picano, MD PROF.,|| Carmine Zoccali, MD PROF.\*†





cardiac probe

- n = 75
- feasibility = 100%
- mean time needed = 4 mins (range 3-6)

Mallamaci F et al. JACC Cardiovascular Imaging 2010

### **Future directions**





EUropean REnal and CArdiovascular Medicine Working Group

#### Lung water by Ultra-Sound-guided Treatment to prevent death and cardiovascular complications in high risk end-stage renal disease patients with cardiomyopathy







# Lung ultrasound in the ED

Emergency Thoracic Ultrasound in the Differentiation of the Etiology of Shortness of Breath (ETUDES): Sonographic B-lines and N-terminal Pro-brain-type Natriuretic Peptide in Diagnosing Congestive Heart Failure

Andrew S. Liteplo, MD, RDMS, Keith A. Marill, MD, Tomas Villen, MD, Robert M. Miller, MD, Alice F. Murray, MBChB, Peter E. Croft, BS, Roberta Capp, MD, and Vicki E. Noble, MD, RDMS

RESEARCH

**Open Access** 

Combination of lung ultrasound (a comet-tail sign) and N-terminal pro-brain natriuretic peptide in differentiating acute heart failure from chronic obstructive pulmonary disease and asthma as cause of acute dyspnea in prehospital emergency setting

Gregor Prosen<sup>1,2</sup>, Petra Klemen<sup>1,2,3</sup>, Matej Strnad<sup>1,2</sup> and Štefek Grmec<sup>1,2,3,4\*</sup>

Intern Emerg Med DOI 10.1007/s11739-011-0709-1

EM - ORIGINAL

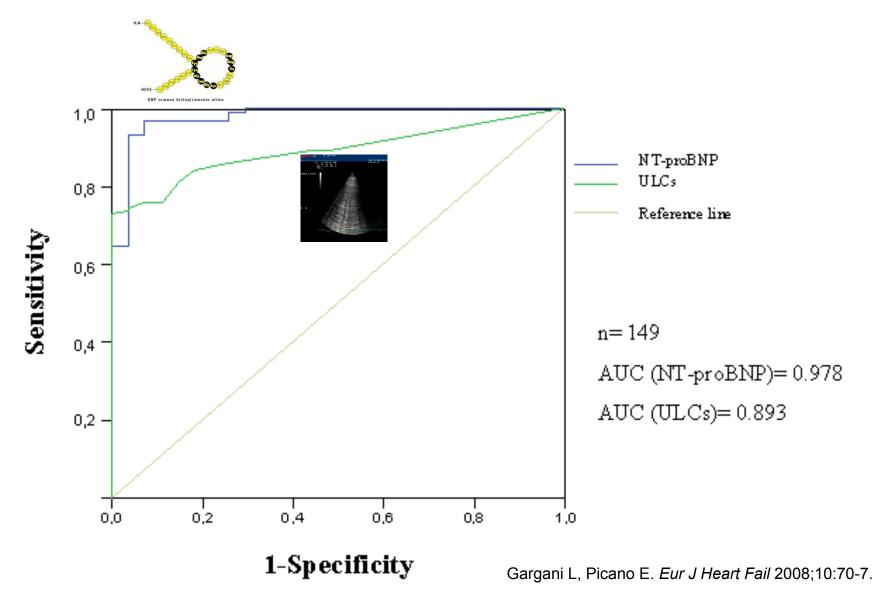
Diagnostic accuracy and reproducibility of pleural and lung ultrasound in discriminating cardiogenic causes of acute dyspnea in the Emergency Department

Gian Alfonso Cibinel · Giovanna Casoli · Fabrizio Elia · Monica Padoan · Emanuele Pivetta · Enrico Lupia · Alberto Goffi

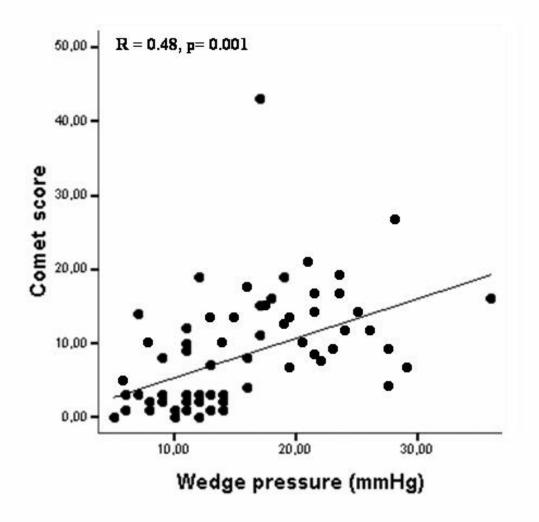


Lung ultrasound by emergency nursing as an aid for rapid triage of dyspneic patients: a pilot study



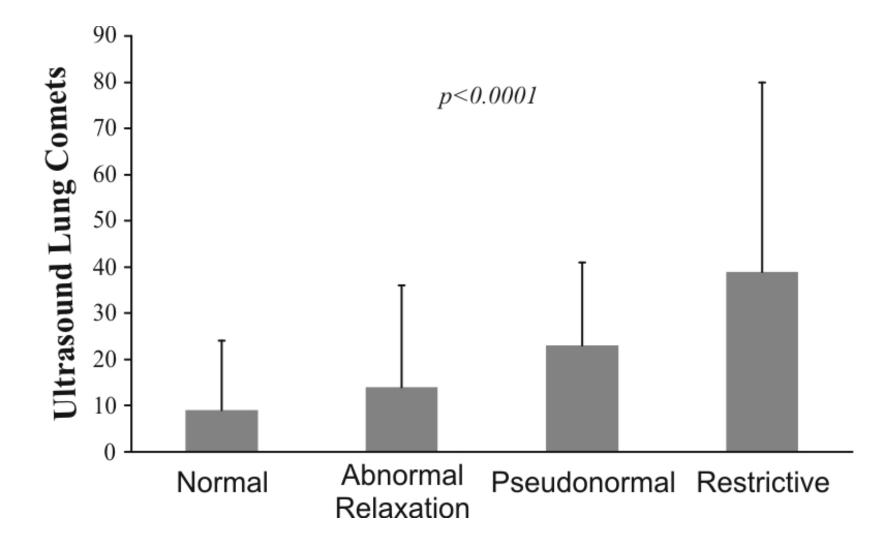

Erden Erol Ünlüer <sup>a,\*</sup>, Arif Karagöz <sup>a</sup>, Orhan Oyar <sup>b</sup>, Nergiz Vandenberk <sup>a</sup>, Sevda Kiyançiçek <sup>a</sup>, Figen Budak




**Progressive Clinical Practice** 

Point-of-care Ultrasonography for the Diagnosis of Acute Cardiogenic Pulmonary Edema in Patients Presenting With Acute Dyspnea: A Systematic Review and Meta-analysis

#### **B-lines and natriuretic peptides**




# **B-lines and PCWP**

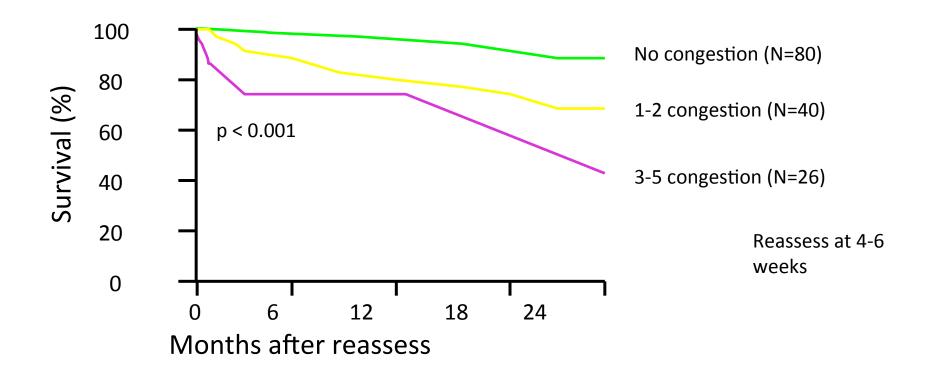


Agricola E, Picano E et al. Chest 2005; 127:1690

#### **B-lines and diastolic dysfunction**



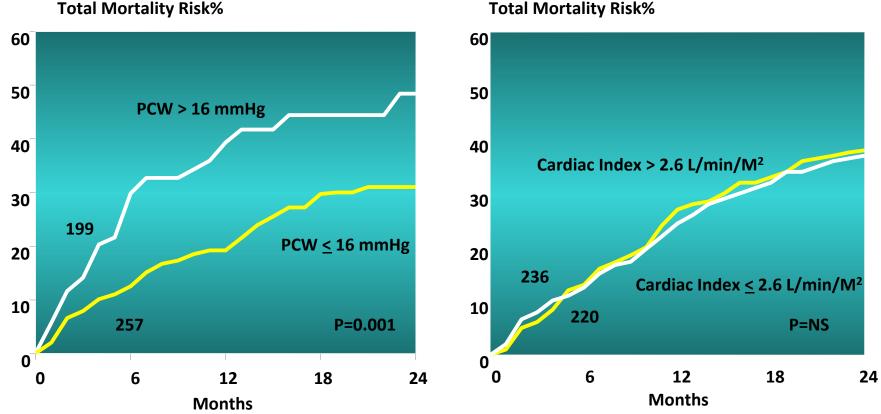
Frassi F, Gargani L, Ciampi Q, Picano E, Eur J Echocardiogr 2007;8:474


# La congestione nello scompenso cardiaco

### 1. Why

#### 2. When

#### 3. How


#### **Prognostic implications: clinical congestion**



Criteria for congestion: Orthopnea, JVD, wt. gain ≥ 2 lb. in a week, need to increase diuretic dose, leg edema.

Lucas C et al. Am Heart J. 2000; 140: 840

#### **Prognostic implications: hemodynamic congestion**



**Total Mortality Risk%** 

Final hemodynamics measurement in 456 advanced HF patients after tailored therapy

Fonarow et al., Circulation 1994;90:I-488

# La congestione nello scompenso cardiaco

1. Why

2. When

3. How

### When to assess pulmonary congestion



| When          | Diagnostic target                 |
|---------------|-----------------------------------|
| Outpatient    | Exclude impending instabilization |
| ER            | AHF diagnosis                     |
| Ward          | Therapy titration                 |
| Pre-discharge | Risk stratification               |

Picano E, Gargani L, Gheorghiade M Heart Fail Rev. 2010;15:63-72.

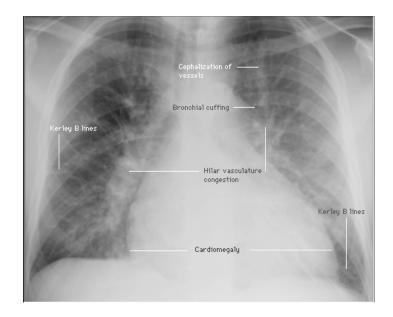
# La congestione nello scompenso cardiaco

- 1. Why
- 2. When



Conventional tools to assess changes in pulmonary congestion

- Signs and symptoms
- Daily weights
- CXR
- Natriuretic peptides (BNP and NT-proBNP)
- Right heart catheterization


# Hystory and physical examination

| Variable  | Sensitivity (%) | Specificity (%) | Accuracy (%) |
|-----------|-----------------|-----------------|--------------|
| Hx of HF  | 62              | 94              | 80           |
| Dyspnea   | 56              | 53              | 54           |
| Orthopnea | 47              | 88              | 72           |
| Rales     | 56              | 80              | 70           |
| S3        | 20              | 99              | 66           |
| JVD       | 39              | 94              | 72           |
| Edema     | 67              | 68              | 68           |

Dao, Q., Maisel, A. et al. *J. American College of Cardiology*, Vol 37, No. 2, 2001 Adapted from Chakko S. et al. Am J Med. 1991; 90: 353 Adapted from Butman SM. Et al. J Am Coll Cardiol. 1993; 22: 968

# How good is CXR in diagnosing heart failure?

- Misses 20% of echo proven cardiomegaly
- Detection of pleural effusion if supine
  - 67% sensitivity
  - 70% specificity
- Even worse
   if done portable



# **Dyspnea in ejection fraction 18%**

#### Diario

Il paziente presenta dispnea. EO: tachipnea, parziale disorientamento ST, rumori umidi diffusi su tutto l'ambito. PA 105/85 mmHg, Sat O2 95% in O2 con cannule nasali a 5 l/min. Diuresi 900 cc. Si incrementa la velocità del diuretico a 4 cc/ora e si applica telemetrico.

#### Diario

Il paziente e' scarsamente responsivo e disorientato. Presenta evidente respiro periodico che non era presente ieri. PA 100/75 mmHg, al monitor ritmo indotto da PM. EGA pH 7 43, pCO2 41, pO2 70, B 2 5, HCO3- 26 6. La variazione del quadro neurologico

potrebbe dipendere da emoconcentrazione (Hb 20) per cui si idrata il paziente con SF 1L

in 24 h e Lasix 125 mg, si richiede inoltre TC cranio urgente senza mdc per escludere possibile sanguinamento. Si richiede infine monitoraggio del respiro.

#### Diario

Incremento della creatininemia, si aggiunge idratazione (Sol Fis 1000 cc + aminoacidi 500 cc). Si somministra Lasix 250 mg in 8 ore. Crepitii alle basi. Risponde agli stimoli verbali.